Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
arxiv; 2024.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2403.11498v1

ABSTRACT

In response to the need for rapid and accurate COVID-19 diagnosis during the global pandemic, we present a two-stage framework that leverages pseudo labels for domain adaptation to enhance the detection of COVID-19 from CT scans. By utilizing annotated data from one domain and non-annotated data from another, the model overcomes the challenge of data scarcity and variability, common in emergent health crises. The innovative approach of generating pseudo labels enables the model to iteratively refine its learning process, thereby improving its accuracy and adaptability across different hospitals and medical centres. Experimental results on COV19-CT-DB database showcase the model's potential to achieve high diagnostic precision, significantly contributing to efficient patient management and alleviating the strain on healthcare systems. Our method achieves 0.92 Macro F1 Score on the validation set of Covid-19 domain adaptation challenge.


Subject(s)
COVID-19
2.
arxiv; 2024.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2403.11953v1

ABSTRACT

To make a more accurate diagnosis of COVID-19, we propose a straightforward yet effective model. Firstly, we analyse the characteristics of 3D CT scans and remove the non-lung parts, facilitating the model to focus on lesion-related areas and reducing computational cost. We use ResNeSt50 as the strong feature extractor, initializing it with pretrained weights which have COVID-19-specific prior knowledge. Our model achieves a Macro F1 Score of 0.94 on the validation set of the 4th COV19D Competition Challenge $\mathrm{I}$, surpassing the baseline by 16%. This indicates its effectiveness in distinguishing between COVID-19 and non-COVID-19 cases, making it a robust method for COVID-19 detection.


Subject(s)
COVID-19
3.
J Thorac Dis ; 15(5): 2859-2872, 2023 May 30.
Article in English | MEDLINE | ID: covidwho-2328382

ABSTRACT

Background: Effective anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs are not only the next defense after vaccines but also the key part of establishing a multi-tiered coronavirus disease 2019 (COVID-19) prevention and control system. Previous studies had indicated that Lianhua Qingwen (LHQW) capsules could be an efficacious Chinese patent drug for treating mild to moderate COVID-19. However, pharmacoeconomic evaluations are lacking, and few trials have been conducted in other countries or regions to evaluate the efficacy and safety of LHQW treatment. So, this study aims to explore the clinical efficacy, safety, and economy of LHQW for treating adult patients with mild to moderate COVID-19. Methods: This is a randomized, double-blind, placebo-controlled, international multicenter clinical trial protocol. A total of 860 eligible subjects are randomized at a 1:1 ratio into the LHQW or placebo group to receive two-week treatment and follow-up visits on days 0, 3, 7, 10, and 14. Clinical symptoms, patient compliance, adverse effects, cost scale, and other indicators are recorded. The primary outcomes will be the measured median time to sustained improvement or resolution of the nine major symptoms during the 14-day observation period. Secondary outcomes regarding clinical efficacy will be evaluated in detail on the basis of clinical symptoms (especially body temperature, gastrointestinal symptoms, smell loss, and taste loss), viral nucleic acid, imaging (CT/chest X-ray), the incidence of severe/critical illness, mortality, and inflammatory factors. Moreover, we will assess health care cost, health utility, and incremental cost-effectiveness ratio (ICER) for economic evaluation. Discussion: This is the first international multicenter randomized controlled trial (RCT) of Chinese patent medicine for the treatment of early COVID-19 in accordance with WHO guidelines on COVID-19 management. This study will help clarify the potential efficacy and cost-effectiveness of LHQW in the treatment of mild to moderate COVID-19, facilitating decision-making by healthcare workers. Registration: This study is registered at the Chinese Clinical Trial Registry, with registration number: ChiCTR2200056727 (date of first registration: 11/02/2022).

4.
arxiv; 2022.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2211.14557v1

ABSTRACT

This paper presents our solution for the 2nd COVID-19 Competition, occurring in the framework of the AIMIA Workshop at the European Conference on Computer Vision (ECCV 2022). In our approach, we employ the winning solution last year which uses a strong 3D Contrastive Mixup Classifcation network (CMC v1) as the baseline method, composed of contrastive representation learning and mixup classification. In this paper, we propose CMC v2 by introducing natural video priors to COVID-19 diagnosis. Specifcally, we adapt a pre-trained (on video dataset) video transformer backbone to COVID-19 detection. Moreover, advanced training strategies, including hybrid mixup and cutmix, slicelevel augmentation, and small resolution training are also utilized to boost the robustness and the generalization ability of the model. Among 14 participating teams, CMC v2 ranked 1st in the 2nd COVID-19 Competition with an average Macro F1 Score of 89.11%.


Subject(s)
COVID-19
5.
arxiv; 2022.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2211.14559v2

ABSTRACT

This paper presents our solution for the 2nd COVID-19 Severity Detection Competition. This task aims to distinguish the Mild, Moderate, Severe, and Critical grades in COVID-19 chest CT images. In our approach, we devise a novel infection-aware 3D Contrastive Mixup Classification network for severity grading. Specifcally, we train two segmentation networks to first extract the lung region and then the inner lesion region. The lesion segmentation mask serves as complementary information for the original CT slices. To relieve the issue of imbalanced data distribution, we further improve the advanced Contrastive Mixup Classification network by weighted cross-entropy loss. On the COVID-19 severity detection leaderboard, our approach won the first place with a Macro F1 Score of 51.76%. It significantly outperforms the baseline method by over 11.46%.


Subject(s)
COVID-19
6.
arxiv; 2022.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2211.13837v1

ABSTRACT

Decision-focused learning (DFL) was recently proposed for stochastic optimization problems that involve unknown parameters. By integrating predictive modeling with an implicitly differentiable optimization layer, DFL has shown superior performance to the standard two-stage predict-then-optimize pipeline. However, most existing DFL methods are only applicable to convex problems or a subset of nonconvex problems that can be easily relaxed to convex ones. Further, they can be inefficient in training due to the requirement of solving and differentiating through the optimization problem in every training iteration. We propose SO-EBM, a general and efficient DFL method for stochastic optimization using energy-based models. Instead of relying on KKT conditions to induce an implicit optimization layer, SO-EBM explicitly parameterizes the original optimization problem using a differentiable optimization layer based on energy functions. To better approximate the optimization landscape, we propose a coupled training objective that uses a maximum likelihood loss to capture the optimum location and a distribution-based regularizer to capture the overall energy landscape. Finally, we propose an efficient training procedure for SO-EBM with a self-normalized importance sampler based on a Gaussian mixture proposal. We evaluate SO-EBM in three applications: power scheduling, COVID-19 resource allocation, and non-convex adversarial security game, demonstrating the effectiveness and efficiency of SO-EBM.


Subject(s)
COVID-19
7.
Front Immunol ; 13: 991256, 2022.
Article in English | MEDLINE | ID: covidwho-2065519

ABSTRACT

Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a group of diseases characterized by inflammation and destruction of small and medium-sized blood vessels. Clinical disease phenotypes include microscopic polyangiitis (MPA), granulomatosis with polyangiitis (GPA), and eosinophilic granulomatosis with polyangiitis (EGPA). The incidence of AAV has been on the rise in recent years with advances in ANCA testing. The etiology and pathogenesis of AAV are multifactorial and influenced by both genetic and environmental factors, as well as innate and adaptive immune system responses. Multiple case reports have shown that sustained exposure to silica in an occupational environment resulted in a significantly increased risk of ANCA positivity. A meta-analysis involving six case-control studies showed that silica exposure was positively associated with AAV incidence. Additionally, exposure to air pollutants, such as carbon monoxide (CO), is a risk factor for AAV. AAV has seasonal trends. Studies have shown that various environmental factors stimulate the body to activate neutrophils and expose their own antigens, resulting in the release of proteases and neutrophil extracellular traps, which damage vascular endothelial cells. Additionally, the activation of complement replacement pathways may exacerbate vascular inflammation. However, the role of environmental factors in the etiology of AAV remains unclear and has received little attention. In this review, we summarized the recent literature on the study of environmental factors, such as seasons, air pollution, latitude, silica, and microbial infection, in AAV with the aim of exploring the relationship between environmental factors and AAV and possible mechanisms of action to provide a scientific basis for the prevention and treatment of AAV.


Subject(s)
Air Pollutants , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Churg-Strauss Syndrome , Granulomatosis with Polyangiitis , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/drug therapy , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/epidemiology , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/etiology , Antibodies, Antineutrophil Cytoplasmic , Carbon Monoxide/therapeutic use , Churg-Strauss Syndrome/complications , Endothelial Cells/pathology , Humans , Inflammation/complications , Peptide Hydrolases , Silicon Dioxide
8.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.07.18.500332

ABSTRACT

The Omicron subvariants BA.2.75 is rapidly raising in India. BA.2.75 also shows a local growth advantage compared to BA.2.38 and BA.4/BA.5. Its immune evasion capability and receptor binding affinity is unclear and requires investigation. Here, we show that BA.2.75 is more neutralization evasive than BA.2.12.1 against the plasma from post-vaccination BA.2 infection, but less compared to BA.4/BA.5. However, as shown in a small sample of plasma from post-vaccination Delta infection, BA.2.75 seems to be more immune evasive than BA.4/BA.5 in Delta-stimulated immune background, which may explain BA. 2.75's growth advantage over BA.4/BA.5 in India. The additional N460K, G446S, D339H and R493Q mutations carried by BA.2.75 allows it to escape BA.2-effective neutralizing antibodies of different RBD epitopes, and BA.2.75 has a distinct antibody escaping profile from BA.4/BA.5. Compared to BA.2, REGN10933 and COV2-2196 partially recovered neutralization against BA.2.75 due to R493Q reversion. However, the efficacy of their corresponding cocktail was not significantly changed, since REGN10987 and COV2-2130 showed reduced neutralizing activity due to G446S. BA.2.75 exhibits higher ACE2-binding affinity than BA.4/BA.5, which should be contributed by R493Q and N460K, according to deep mutational scanning (DMS) results. This affinity-strengthening feature is being further examined and verified, which will be updated soon.


Subject(s)
Hepatitis D
9.
arxiv; 2022.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2207.01758v1

ABSTRACT

This paper presents our solution for the 2nd COVID-19 Competition, occurring in the framework of the AIMIA Workshop in the European Conference on Computer Vision (ECCV 2022). In our approach, we employ an effective 3D Contrastive Mixup Classification network for COVID-19 diagnosis on chest CT images, which is composed of contrastive representation learning and mixup classification. For the COVID-19 detection challenge, our approach reaches 0.9245 macro F1 score on 484 validation CT scans, which significantly outperforms the baseline method by 16.5%. In the COVID-19 severity detection challenge, our approach achieves 0.7186 macro F1 score on 61 validation samples, which also surpasses the baseline by 8.86%.


Subject(s)
COVID-19
10.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.30.489997

ABSTRACT

Recent emergence of SARS-CoV-2 Omicron sublineages BA.2.12.1, BA.2.13, BA.4 and BA.5 all contain L452 mutations and show potential higher transmissibility over BA.2. The new variants' receptor binding and immune evasion capability require immediate investigation, especially on the role of L452 substitutions. Herein, coupled with structural comparisons, we showed that BA.2 sublineages, including BA.2.12.1 and BA.2.13, exhibit increased ACE2-binding affinities compared to BA.1; while BA.4/BA.5 shows the weakest receptor-binding activity due to F486V and R493Q reversion. Importantly, compared to BA.2, BA.2.12.1 and BA.4/BA.5 exhibit stronger neutralization escape from the plasma of 3-dose vaccinees and, most strikingly, from vaccinated BA.1 convalescents. To delineate the underlying evasion mechanism, we determined the escaping mutation profiles, epitope distribution and Omicron sublineage neutralization efficacy of 1640 RBD-directed neutralizing antibodies (NAbs), including 614 isolated from BA.1 convalescents. Interestingly, post-vaccination BA.1 infection mainly recalls wildtype (WT) induced humoral memory and elicits antibodies that neutralize both WT and BA.1. These cross-reactive NAbs are significantly enriched on non-ACE2-competing epitopes; and surprisingly, the majority are undermined by R346 and L452 substitutions, namely R346K (BA.1.1), L452M (BA.2.13), L452Q (BA.2.12.1) and L452R (BA.4/BA.5), suggesting that R346K and L452 mutations appeared under the immune pressure of Omicron convalescents. Nevertheless, BA.1 infection can also induce new clones of BA.1-specific antibodies that potently neutralize BA.1 but do not respond to WT SARS-CoV-2, due to the high susceptibility to N501, N440, K417 and E484. However, these NAbs are largely escaped by BA.2 sublineages and BA.4/BA.5 due to D405N and F486V, exhibiting poor neutralization breadths. As for therapeutic NAbs, LY-CoV1404 (Bebtelovimab) and COV2-2130 (Cilgavimab) can still effectively neutralize BA.2.12.1 and BA.4/BA.5, while the S371F, D405N and R408S mutations carried by BA.2/BA.4/BA.5 sublineages would undermine most broad sarbecovirus NAbs. Together, our results indicate that Omicron can evolve mutations to specifically evade humoral immunity elicited by BA.1 infection. The continuous evolution of Omicron poses great challenges to SARS-CoV-2 herd immunity and suggests that BA.1-derived vaccine boosters may not be ideal for achieving broad-spectrum protection.

11.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1611421.v1

ABSTRACT

Recent emergence of SARS-CoV-2 Omicron sublineages BA.2.12.1, BA.2.13, BA.4 and BA.5 all contain L452 mutations and show potential higher transmissibility over BA.2. The new variants’ receptor binding and immune evasion capability require immediate investigation, especially on the role of L452 substitutions. Herein, coupled with structural comparisons, we showed that BA.2 sublineages, including BA.2.12.1 and BA.2.13, exhibit increased ACE2-binding affinities compared to BA.1; while BA.4/BA.5 shows the weakest receptor-binding activity due to F486V and R493Q reversion. Importantly, compared to BA.2, BA.2.12.1 and BA.4/BA.5 exhibit stronger neutralization escape from the plasma of 3-dose vaccinees and, most strikingly, from vaccinated BA.1 convalescents. To delineate the underlying evasion mechanism, we determined the escaping mutation profiles, epitope distribution and Omicron sub-lineage neutralization efficacy of 1640 RBD-directed neutralizing antibodies (NAbs), including 614 isolated from BA.1 convalescents. Interestingly, post-vaccination BA.1 infection mainly recalls wildtype-induced humoral memory and elicits antibodies that neutralize both wild-type and BA.1. These cross-reactive NAbs are significantly enriched on non-ACE2-competing epitopes; and surprisingly, the majority are undermined by R346 and L452 substitutions, namely R346K (BA.1.1), L452M (BA.2.13), L452Q (BA.2.12.1) and L452R (BA.4/BA.5), suggesting that R346K and L452 mutations appeared under the immune pressure of Omicron convalescents. Nevertheless, BA.1 infection can also induce new clones of BA.1-specific antibodies that potently neutralize BA.1 but do not respond to wild-type SARS-CoV-2, due to the high susceptibility to N501, N440, K417 and E484. However, these NAbs are largely escaped by BA.2 sublineages and BA.4/BA.5 due to D405N and F486V, exhibiting poor neutralization breadths. As for therapeutic NAbs, LY-CoV1404 (Bamlanivimab) and COV2-2130 (Cilgavimab) can still effectively neutralize BA.2.12.1 and BA.4/BA.5, while the S371F, D405N and R408S mutations carried by BA.2/BA.4/BA.5 sublineages would undermine most broad sarbecovirus NAbs. Together, our results indicate that Omicron can evolve mutations to specifically evade humoral immunity elicited by BA.1 infection. The continuous evolution of Omicron poses great challenges to SARS-CoV-2 herd immunity and suggests that BA.1-derived vaccine boosters may not be ideal for achieving broad-spectrum protection.

12.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1565933.v1

ABSTRACT

Background This study investigated the effects of nutritional status at the time of admission on clinical outcomes in patients with Coronavirus disease 2019 (COVID-19).Methods A retrospective analysis was performed on 54 patients diagnosed with COVID-19. Clinical data of admitted patients, albumin and pre-serum albumin levels, gastrointestinal intolerance, and general information were collected and analyzed. The primary clinical outcomes were length of hospital stay and hospitalization costs.Results The results showed that albumin and pre-serum albumin levels of patients at admission were negatively associated with the length of hospital stay and hospitalization costs (P < 0.001). Patients with poor appetite had longer hospital stays (P < 0.001) and higher hospital costs (P = 0.022).Conclusion These results indicated that the nutritional status at admission can directly influence the clinical outcomes of COVID-19.


Subject(s)
COVID-19
13.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.29.474402

ABSTRACT

The SARS-CoV-2 Omicron with increased fitness is spreading rapidly worldwide. Analysis of cryo-EM structures of the Spike (S) from Omicron reveals amino acid substitutions forging new interactions that stably maintain an active conformation for receptor recognition. The relatively more compact domain organization confers improved stability and enhances attachment but compromises the efficiency of viral fusion step. Alterations in local conformation, charge and hydrophobic microenvironments underpin the modulation of the epitopes such that they are not recognized by most NTD- and RBD-antibodies, facilitating viral immune escape. Apart from already existing mutations, we have identified three new immune escape sites: 1) Q493R, 2) G446S and 3) S371L/S373P/S375F that confers greater resistance to five of the six classes of RBD-antibodies. Structure of the Omicron S bound with human ACE2, together with analysis of sequence conservation in ACE2 binding region of 25 sarbecovirus members as well as heatmaps of the immunogenic sites and their corresponding mutational frequencies sheds light on conserved and structurally restrained regions that can be used for the development of broad-spectrum vaccines and therapeutics.

14.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.10.377333

ABSTRACT

The ongoing SARS-CoV-2 pandemic has brought an urgent need for animal models to study the pathogenicity of the virus. Herein, we generated and characterized a novel mouse-adapted SARS-CoV-2 strain named MASCp36 that causes acute respiratory symptoms and mortality in standard laboratory mice. Particularly, this model exhibits age and gender related skewed distribution of mortality akin to severe COVID-19, and the 50% lethal dose (LD50) of MASCp36 was ~100 PFU in aged, male BALB/c mice. Deep sequencing identified three amino acid mutations, N501Y, Q493H, and K417N, subsequently emerged at the receptor binding domain (RBD) of MASCp36, which significantly enhanced the binding affinity to its endogenous receptor, mouse ACE2 (mACE2). Cryo-electron microscopy (cryo-EM) analysis of mACE2 in complex with the RBD of MASCp36 at 3.7-angstrom resolution elucidates molecular basis for the receptor-binding switch driven by amino acid substitutions. Our study not only provides a robust platform for studying the pathogenesis of severe COVID-19 and rapid evaluation of coutermeasures against SARS-CoV-2, but also unveils the molecular mechanism for the rapid adaption and evolution of SARS-CoV-2 in mice.


Subject(s)
Signs and Symptoms, Respiratory , COVID-19
15.
Thao Vo; Kshitiz Paudel; Ishita Choudhary; Sonika Patial; Yogesh Saini; Tatyana Egorova; Elena Alkalaeva; Qing Ye; Yong-Qiang Deng; Xiaopeng Song; Yini Qi; Min Li; Jun Lan; Rui Feng; Lei Wang; Yifei Zhang; Chao Zhou; Lingna Zhao; Yuehong Chen; Meng Shen; Yujun Cui; Xiao Yang; Xinquan Wang; Hui Wang; Xiangxi Wang; Chengfeng Qin; Anna Haenle; Michael Groessler; Holger Fleckenstein; Fabian Trost; Marina Galchenkova; Yaroslav Gevorkov; Chufeng Li; Salah Awel; Ariana Peck; Miriam Barthelmess; Frank Schluenzen; Xavier P Lourdu; Nadine Werner; Hina Andaleeb; Najeeb Ullah; Sven Falke; Vasundara Srinivasan; Bruno Franca; Martin Schwinzer; Hevila Brognaro; Cromarte Rogers; Diogo Melo; John J Doyle; Juraj Knoska; Gisel E Pena Murillo; Aida Rahmani Mashhour; Filip Guicking; Vincent Hennicke; Pontus Fischer; Johanna Hakanpaeae; Jan Meyer; Philip Gribbon; Bernhard Ellinger; Maria Kuzikov; Markus Wolf; Gleb Borenkov; David von Stetten; Guillaume Pompidor; Isabel Bento; Saravanan Panneerselvam; Ivars Karpics; Thomas R Schneider; Maria Garcia Alai; Stephan Niebling; Christian Guenther; Christina Schmidt; Robin Schubert; Huijong Han; Juliane Boger; Diana Monteiro; Linlin Zhang; Xinyuanyuan Sun; Jonathan Pletzer-Zelgert; Jan Wollenhaupt; Christian Feiler; Manfred S. Weiss; Eike C. Schulz; Pedram Mehrabi; katarina karnicar; Aleksandra Usenik; jure loboda; Henning Tidow; Ashwin chari; Rolf Hilgenfeld; Charlotte Uetrecht; Russell Cox; Andrea Zaliani; Tobias Beck; Matthias Rarey; Stephan Guenther; Dusan Turk; Winfried Hinrichs; Henry N Chapman; Arwen R Pearson; Christian Betzel; Alke Meents.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.10.377408

ABSTRACT

Background: SARS-CoV-2, a novel coronavirus, and the etiologic agent for the current global health emergency, causes acute infection of the respiratory tract leading to severe disease and significant mortality. Ever since the start of SARS-CoV-2, also known as COVID-19 pandemic, countless uncertainties have been revolving around the pathogenesis and epidemiology of the SARS-CoV-2 infection. While air pollution has been shown to be strongly correlated to increased SARS-CoV-2 morbidity and mortality, whether environmental pollutants such as ground level ozone affects the susceptibility of individuals to SARS-CoV-2 is not yet established. Objective: To investigate the impact of ozone inhalation on the expression levels of signatures associated with host susceptibility to SARS-CoV-2. Methods: We analyzed lung tissues collected from mice that were sub-chronically exposed to air or 0.8ppm ozone for three weeks (4h/night, 5 nights/week), and analyzed the expression of signatures associated with host susceptibility to SARS-CoV-2. Results: SARS-CoV-2 entry into the host cells requires proteolytic priming by the host-derived protease, transmembrane protease serine 2 (TMPRSS2). The TMPRSS2 protein and Tmprss2 transcripts were significantly elevated in the extrapulmonary airways, parenchyma, and alveolar macrophages from ozone-exposed mice. A significant proportion of additional known SARS-CoV-2 host susceptibility genes were upregulated in alveolar macrophages and parenchyma from ozone-exposed mice. Conclusions: Our data indicate that the unhealthy levels of ozone in the environment may predispose individuals to severe SARS-CoV-2 infection. Given the severity of this pandemic, and the challenges associated with direct testing of host-environment interactions in clinical settings, we believe that this mice-ozone-exposure based study informs the scientific community of the potentially detrimental effects of the ambient ozone levels determining the host susceptibility to SARS-CoV-2.


Subject(s)
COVID-19 , Adenocarcinoma, Bronchiolo-Alveolar
16.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.11.377739

ABSTRACT

The Nsp1 protein of SARS-CoV-2 regulates the translation of host and viral mRNAs in cells. Nsp1 inhibits host translation initiation by binding to the entry channel of the 40S ribosome subunit. The structural study of SARS-CoV-2 Nsp1-ribosomal complexes reported post-termination 80S complex containing Nsp1 and the eRF1 and ABCE1 proteins. Considering the presence of Nsp1 in the post-termination 80S ribosomal complex simultaneously with eRF1, we hypothesized that Nsp1 may be involved in translation termination. We show the direct influence of Nsp1 on translation termination. Using a cell-free translation system and reconstituted in vitro translation system, we reveal that Nsp1 stimulates translation termination in the stop codon recognition stage. We identify that activity of Nsp1 in translation termination is localized in its N-terminal domain. The data obtained will enable an investigation of new classes of potential therapeutic agents from coronavirus infection competing with Nsp1 for binding with the termination complex.


Subject(s)
Coronavirus Infections
17.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.09.375394

ABSTRACT

COVID-19, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has quickly become a global health crisis since the first report of infection in December of 2019. However, the infection spectrum of SARS-CoV-2 and its comprehensive protein-level interactions with hosts remain unclear. There is a massive amount of under-utilized data and knowledge about RNA viruses highly relevant to SARS-CoV-2 and their hosts' proteins. More in-depth and more comprehensive analyses of that knowledge and data can shed new insight into the molecular mechanisms underlying the COVID-19 pandemic and reveal potential risks. In this work, we constructed a multi-layer virus-host interaction network to incorporate these data and knowledge. A machine learning-based method, termed Infection Mechanism and Spectrum Prediction (IMSP), was developed to predict virus-host interactions at both protein and organism levels. Our approach revealed five potential infection targets of SARS-CoV-2, which deserved public health attention, and eight highly possible interactions between SARS-CoV-2 proteins and human proteins. Given a new virus, IMSP can utilize existing knowledge and data about other highly relevant viruses to predict multi-scale interactions between the new virus and potential hosts.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
18.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-94520.v1

ABSTRACT

Background: The Coronavirus disease 2019 (COVID-19) pandemic has extraordinarily impacted global healthcare. Neuro-oncological surgery units have peculiar features that make them highly relevant in the strategic reaction to the pandemic. In this Chinese Society of Neuro-Oncology (CSNO) initiated survey, we appraise the changes implemented in neurosurgery hospitals across different Asian countries and provide expert recommendations for responses at different stages of the pandemic. Methods: : A 42-question survey was distributed to neurosurgery hospitals across different Asian countries by the CSNO on April 1, 2020, with responses closed on April 18, 2020. Results: : 144 hospitals completed the questionnaire. Most were in WHO post-peak phase of the pandemic and reported a median reduction in neurosurgery volume of 25-50%. Most(67.4%) resumed elective surgery in only COVID-19 negative patients;11.1% performed only emergency cases irrespective of COVID-19 status;2.1% suspended all surgical activity. Ninety-one(63.2%) relocated personnel from neurosurgery to other departments. Fifty-two(36.1%) hospitals suspended post-operative adjuvant therapy and 94(65.2%) instituted different measures to administer post-operative adjuvant therapy. Majority(59.0%) of the hospitals suspended research activity. Most(70%) respondents anticipate that current neurosurgery restrictions will continue to remain for >1 month. Conclusions: : Majority of the respondents to our survey reported reduced neurosurgery activity, policy modification, personnel reallocation, and curtailment of educational/research activities in response to the COVID-19 pandemic. The persistent widespread interruption of surgical neuro-oncology in even post-peak phases of the pandemic raises serious concerns about the long-term impact of the pandemic on neuro-oncological patients and highlights the essence of timely measures for pandemic preparedness, patient triage, and workforce protection.


Subject(s)
COVID-19
19.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.23.309294

ABSTRACT

Mutations and transient conformational movements of receptor binding domain (RBD) that make neutralizing epitopes momentarily unavailable, present immune escape routes to SARS-CoV-2. To mitigate viral escape, we developed a cocktail of neutralizing antibodies (NAbs) targeting epitopes located on different domains of spike (S) protein. Screening of a library of monoclonal antibodies generated from peripheral blood mononuclear cells of COVID-19 convalescent patients yielded potent NAbs, targeting N-terminal domain (NTD) and RBD domain of S, effective at nM concentrations. Remarkably, combination of RBD-targeting NAbs and NTD-binding NAb, FC05, dramatically enhanced the neutralization potency in cell-based assays and animal model. Results of competitive SPR assays and cryo-EM structures of Fabs bound to S unveil determinants of immunogenicity. Combinations of immunogens, identified in NTD and RBD of S, when immunized in rabbits elicited potent protective immune responses against SARS-CoV-2. These results provide a proof-of-concept for neutralization-based immunogen design targeting SARS-CoV-2 NTD and RBD.


Subject(s)
COVID-19
20.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-81216.v1

ABSTRACT

Background: The Coronavirus disease 2019 (COVID-19) pandemic has extraordinarily impacted global healthcare. Neuro-oncological surgery units have peculiar features that make them highly relevant in the strategic reaction to the pandemic. In this Chinese Society of Neuro-Oncology (CSNO) initiated survey, we appraise the changes implemented in neurosurgery hospitals across different Asian countries and provide expert recommendations for responses at different stages of the pandemic.Methods: A 42-question survey was distributed to neurosurgery hospitals across different Asian countries by the CSNO on April 1, 2020, with responses closed on April 18, 2020.Results: 144 hospitals completed the questionnaire. Most were in WHO post-peak phase of the pandemic and reported a median reduction in neurosurgery volume of 25-50%. Most(67.4%) resumed elective surgery in only COVID-19 negative patients;11.1% performed only emergency cases irrespective of COVID-19 status;2.1% suspended all surgical activity. Ninety-one(63.2%) relocated personnel from neurosurgery to other departments. Fifty-two(36.1%) hospitals suspended post-operative adjuvant therapy and 94(65.2%) instituted different measures to administer post-operative adjuvant therapy. Majority(59.0%) of the hospitals suspended research activity. Most(70%) respondents anticipate that current neurosurgery restrictions will continue to remain for >1 month.Conclusions: Majority of the respondents to our survey reported reduced neurosurgery activity, policy modification, personnel reallocation, and curtailment of educational/research activities in response to the COVID-19 pandemic. The persistent widespread interruption of surgical neuro-oncology in even post-peak phases of the pandemic raises serious concerns about the long-term impact of the pandemic on neuro-oncological patients and highlights the essence of timely measures for pandemic preparedness, patient triage, and workforce protection.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL